Studies on glutathione S-transferases important for sperm function: evidence of catalytic activity-independent functions

Author:

GOPALAKRISHNAN B.1,ARAVINDA S.1,PAWSHE C. H.1,TOTEY S. M.1,NAGPAL S.1,SALUNKE D. M.1,SHAHA Chandrima1

Affiliation:

1. National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India

Abstract

Our earlier studies reported the identification of a rat testicular protein of 24 kDa with significant similarity at the N-terminus with Mu class glutathione S-transferases (GSTs). Treatment of goat sperm with antisera against this protein identified immunoreactive sites on the spermatozoa and inhibited in vitro fertilization of goat oocytes by the antibody-treated sperm. The above observations indicated the presence of GST-like molecule(s) important for fertility related events on goat spermatozoa. In this study, we report the purification of goat sperm GSTs (GSP1) which were purified by glutathione affinity chromatography and were enzymically active towards 1-chloro-2,4,-dinitrobenzene, a general GST substrate, and ethacrynic acid, a substrate for Pi class GSTs. GSP1 resolved into three major components on reverse-phase HPLC: peaks 1 and 2 with molecular masses of 26.5 kDa and peak 3 with a molecular mass of 25.5 kDa, as determined by SDS/PAGE. Multiple attempts to obtain N-terminal sequences of the first two peaks failed, indicating N-terminal block; however, they reacted to specific anti-Mu-GST antisera on Western blots and ELISA, and not to anti-Pi-GST antisera, which provides evidence for the presence of Mu-GST-reactive sites on peaks 1 and 2. The third component showed 80% N-terminal similarity with human and rat GSTP1-1 over an overlap of 15 amino acids, and reacted to anti-Pi-specific antisera in ELISA. Sperm labelled with antibodies against a 10-mer and an 11-mer peptide, designed from the N-terminal sequences of Mu and Pi class GSTs respectively, showed the presence of both Mu- and Pi-GST on goat sperm surface at distinct cellular domains. Selective inhibition of Pi class GST by the Pi-specific antisera, either at 0 h or at 3 h after initiation of sperm capacitation, leads to a reduction in fertilization rates. In contrast, the inhibition of Mu class GST by specific antisera at 0 h does not inhibit fertilization, although such treatment at 3 h after the initiation of capacitation reduces fertilization rates. The results indicate that both Pi- and Mu-GSTs are involved in fertilization, but the Mu-GST sites essential for fertilization are exposed only after 3 h of capacitation. The enzymic activity of GSP1 or live spermatozoa is not inhibited by the two antisera. The inability of the antibodies to cause such inhibition indicates that the reduction in fertilization rates and acrosome reaction caused by the antibodies is through a mechanism which does not interfere with the catalytic activity of the molecule. Therefore we established the presence of Pi and Mu class GST on goat sperm, their localization and their possible function in fertility-related events.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3