Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI–BchD complex

Author:

GIBSON Lucien C. D.1,JENSEN Poul Erik1,HUNTER C. Neil1

Affiliation:

1. Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K.

Abstract

The enzyme magnesium-protoporphyrin IX chelatase (Mg chelatase) catalyses the insertion of Mg into protoporphyrin IX, the first committed step in (bacterio)chlorophyll biosynthesis. In the photosynthetic bacterium Rhodobacter sphaeroides, this reaction is catalysed by the products of the bchI, bchDand bchH genes. These genes have been expressed in Escherichia coli so that the BchI, BchD and BchH proteins are produced with N-terminal His6 affinity tags, which has led to the production of large amounts of highly purified, highly active Mg chelatase subunits from a single chromatography step. Furthermore, BchD has been purifed free of contamination with the chaperone GroEL, which had proven to be a problem in the past. BchD, present largely as an insoluble protein in E. coli, was purified in 6 M urea and refolded by addition of BchI, MgCl2 and ATP, yielding highly active protein. BchI/BchD mixtures prepared in this way were used in conjunction with BchH to determine the kinetic parameters of R. sphaeroides Mg chelatase for its natural substrates. We have been able to demonstrate for the first time that BchI and BchD form a complex, and that Mg2+ and ATP are required to establish and maintain this complex. Gel filtration data suggest that BchI and BchD form a complex of molecular mass 200 kDa in the presence of Mg2+ and ATP. Our data suggest that, in vivo, BchD is only folded correctly and maintained in its correct conformation in the presence of BchI, Mg2+ and ATP.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3