Conformational variability of cyanobacterial ChlI, the AAA+ motor of magnesium chelatase involved in chlorophyll biosynthesis

Author:

Shvarev Dmitry1ORCID,Scholz Alischa Ira1,Moeller Arne12ORCID

Affiliation:

1. Structural Biology Section, Department of Biology/Chemistry, Osnabrück University , Osnabrück, Lower Saxony, Germany

2. Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University , Osnabrück, Germany

Abstract

ABSTRACT Magnesium chelatase is a conserved enzyme complex responsible for the first committed step of chlorophyll biosynthesis in photosynthetic organisms, which is the addition of magnesium to the chlorophyll precursor, protoporphyrin IX. The complex is composed of the catalytic subunit ChlH, the bridging subunit ChlD, and the subunit ChlI, which serves as the motor that drives the entire complex. Although the enzyme is well-characterized functionally, high-resolution structures are available only for individual subunits. Hence, the full assembly and molecular mechanism of the enzyme complex remain unknown. Here, we used cryogenic electron microscopy, supported by biochemical analysis and mass photometry, to determine the structures of the ChlI motor subunit of magnesium chelatase under turnover conditions in the presence of ATP. Our data reveal the molecular details of ChlI oligomerization and conformational dynamics upon ATP binding and hydrolysis. These findings provide new insights into the mechanistic function of ChlI and its implications for the entire magnesium chelatase complex machinery. Importance Photosynthesis is an essential life process that relies on chlorophyll. In photosynthetic organisms, chlorophyll synthesis involves multiple steps and depends on magnesium chelatase. This enzyme complex is responsible for inserting magnesium into the chlorophyll precursor, but the molecular mechanism of this process is not fully understood. By using cryogenic electron microscopy and conducting functional analyses, we have discovered that the motor subunit ChlI of magnesium chelatase undergoes conformational changes in the presence of ATP. Our findings offer new insights into how energy is transferred from ChlI to the other components of magnesium chelatase. This information significantly contributes to our understanding of the initial step in chlorophyll biosynthesis and lays the foundation for future studies on the entire process of chlorophyll production.

Funder

Deutsche Forschungsgemeinschaft

Niedersächsisches Ministerium für Wissenschaft und Kultur

Bundesministerium für Bildung und Forschung

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3