Endocytic uptake of advanced glycation end products by mouse liver sinusoidal endothelial cells is mediated by a scavenger receptor distinct from the macrophage scavenger receptor class A

Author:

MATSUMOTO Kenshi12,SANO Hiroyuki1,NAGAI Ryoji1,SUZUKI Hiroshi3,KODAMA Tatsuhiko4,YOSHIDA Masaki2,UEDA Shoichi2,SMEDSRØD Bård5,HORIUCHI Seikoh1

Affiliation:

1. Department of Biochemistry, Kumamoto University School of Medicine, Honjo, 2-2-1, Kumamoto 860-0811, Japan

2. Department of Urology, Kumamoto University School of Medicine, Honjo, 2-2-1, Kumamoto 860-0811, Japan

3. Chugai Pharmaceutical Co. Ltd, 1-135 Komakado, Shizuoka 412-0038, Japan

4. Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Tokyo 153-0041, Japan

5. Department of Experimental Pathology, University of Troms⊘, N-9037 Troms⊘, Norway

Abstract

Previous studies with peritoneal macrophages obtained from macrophage scavenger receptor class A (MSR-A) knock-out mice showed that the endocytic uptake of advanced glycation end products (AGE) by macrophages was mediated mainly by MSR-A. However, it is controversial whether the endocytic uptake of intravenously injected AGE proteins by liver sinusoidal endothelial cells (LECs) is similarly explained by receptor-mediated endocytosis via MSR-A. The present study was conducted to compare the capacity to endocytose AGE proteins in LECs and peritoneal macrophages obtained from MSR-A knock-out and littermate wild-type mice. The endocytic degradation capacity of MSR-A knock-out LECs for AGE–BSA was indistinguishable from that of wild-type LECs, whereas that of MSR-A knock-out peritoneal macrophages for AGE–BSA was decreased to 30% of that in wild-type cells. Similarly, the endocytic degradation of MSR-A knock-out LECs for acetylated low-density lipoprotein (acetyl-LDL) did not differ from that of wild-type LECs, whereas the endocytic degradation of acetyl-LDL by MSR-A knock-out peritoneal macrophages was less than 20% of that in wild-type cells. Furthermore, formaldehyde-treated serum albumin (f-Alb), a ligand known to undergo scavenger-receptor-mediated endocytosis by LECs, was effectively taken up by MSR-A knock-out LECs at a capacity that did not differ from that of wild-type LECs. Moreover, the endocytic uptake of AGE–BSA by LECs was effectively competed for by unlabelled f-Alb or acetyl-LDL. These results indicate that the scavenger-receptor ligands AGE proteins, acetyl-LDL and f-Alb are endocytosed by LECs through a non-MSR-A pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3