The role of inorganic metals and metalloporphyrins in the induction of haem oxygenase and heat-shock protein 70 in human hepatoma cells

Author:

Mitani K1,Fujita H1,Fukuda Y1,Kappas A1,Sassa S1

Affiliation:

1. The Rockefeller University Hospital, New York, NY 10021, U.S.A.

Abstract

The role of inorganic metals and metalloporphyrins in the induction of mRNAs for haem oxygenase and heat-shock protein 70 (hsp70), the two heat-shock proteins, was examined in human HepG2 and Hep3B hepatoma cells. SnCl2, but not Sn-protoporphyrin, was found to be a potent inducer of both haem oxygenase and hsp70 mRNAs. In contrast, CoCl2, ZnCl2 and FeCl2 caused little induction of haem oxygenase and hsp70 mRNAs, whereas the porphyrin complexes of these metals strongly induced haem oxygenase mRNA, without influencing the level of hsp70 mRNA. The induction process was largely transcriptional, as judged by the inhibition of induction by actinomycin D, but not by cycloheximide, and by increased transcription demonstrated by nuclear run-off analysis. Since CoCl2 is a potent inducer of haem oxygenase in vivo in animals, the possibility of the biosynthesis of Co-protoporphyrin was examined in human hepatoma cells by incubating them with CoCl2 and protoporphyrin, or delta-aminolaevulinate (ALA), the precursor of protoporphyrin. Both types of treatment led to a potent induction of haem oxygenase mRNA. Co-protoporphyrin formation was also spectrally demonstrated in cells incubated with the metal and ALA. The results of this study indicate that certain metals, e.g. SnCl2, may directly induce haem oxygenase mRNA, whereas with other elements, incorporation of the metal into the porphyrin macrocycle is necessary for induction. Therefore CoCl2, like haemin, may activate the haem oxygenase gene via a haem-responsive transcription factor, whereas SnCl2 may exert its effect via a metal-responsive transcription factor.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3