Expression Dynamics of Heme Oxygenase-1 in Tumor Cells and the Host Contributes to the Progression of Tumors

Author:

Fang Jun,Islam RayhanulORCID,Gao Shanghui,Zhang Cheng,Kunisaki Ryotaro,Sakaguchi Shogo,Honda Naoya,Zhou Jian-Rong,Yokomizo Kazumi

Abstract

Heme oxygenase (HO-1) plays an important role in cellular protection against various stresses. The induction of HO-1 is an effective strategy for reactive oxygen species-related diseases, inflammatory diseases, as well as suppressing carcinogenesis. On the other hand, the high expression of HO-1 is now well known in many tumors. In this study, we investigated the dynamics of HO-1 expression in the host and the tumor. In the mouse sarcoma S180 solid tumor model and the rat hepatoma AH136B ascitic tumor model, HO-1 expression in the tumor, as indicated by the end product of HO-1 activation, i.e., carbon monoxide, gradually increased along with tumor growth. Over-expression of HO-1 expression in mouse colon cancer C26 tumor cells significantly promoted tumor growth as well as lung metastasis, whereas opposite results were found when the HO-1 expression was reduced in the cells. On the other hand, upregulating HO-1 levels in the host by using an HO-1 inducer protected the progression of the xenograft tumor in mice, whereas lowering HO-1 expression in the host with an HO-1 inhibitor showed accelerated tumor growth and lung metastasis after subcutaneous tumor xenograft inoculation. These findings strongly suggest that the balance of HO-1 levels in the host and the tumor cells is essential for the occurrence, progression, and prognosis of cancer. Maintenance of appropriately high HO-1 levels in the host is favorable for cancer prevention, whereas suppression of HO-1 in the tumor cells may thus become a therapeutic strategy for cancer.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference48 articles.

1. Heme catabolism by heme oxygenase: Physiology, regulation, and mechanism of action;Schacter;Semin. Hematol.,1988

2. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications

3. Biliverdin reductase: A major physiologic cytoprotectant

4. Isolation and Characterization of a cDNA from the Rat Brain that Encodes Hemoprotein Heme Oxygenase-3

5. The enzymatic catabolism of hemoglobin: Stimulation of microsomal heme oxygenase by hemin;Tenhunen;J. Lab. Clin. Med.,1970

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3