Effects of fasting on hepatic and peripheral glucose metabolism in conscious rats with near-total fat depletion

Author:

Barzilai N1,Massillon D1,Rossetti L1

Affiliation:

1. Department of Medicine, Division of Endocrinology, and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A.

Abstract

Experimental diabetes and fasting are both associated with hypoinsulinaemia and share several other metabolic features. We investigated hepatic and peripheral glucose metabolism in young rats after near-total depletion of their fat mass. Conscious rats were fasted for 72 h (n = 13), while 6 h-fasted animals (n = 14) served as controls. Rats were studied either during saline infusion or insulin (18 m-units/kg per min)-clamp studies. In fasting, despite a 2-fold increase in hepatic glucose-6-phosphatase (Glc-6-Pase) Vmax. (from 16 +/- 2 mumol/g of liver per min in control; P < 0.001), the basal hepatic glucose production (HGP) decreased by 47% [from 88 +/- 3 mumol/kg lean body mass (LBM) per min in control; P < 0.01]. The decreased HGP in fasting was associated with a 70% decrease in the hepatic levels of glucose 6-phosphate (Glc-6-P) (from 366 +/- 53 nmol/g wet wt. in control; P < 0.01). Thus Glc-6-Pase activity assayed in the presence of the Glc-6-P levels found in vivo was decreased by 44%. During hyperinsulinaemia, peripheral glucose uptake was decreased by 15% with 3 days of fasting (from 272 +/- 17 mumol/kg LBM per min in control; P < 0.01). This was completely accounted for by a 42% decrease in whole-body glycolysis (P < 0.01), while the rate of glycogen synthesis was unchanged. Thus fasting (after near-total fat depletion) differs from experimental diabetes because: (1) despite markedly increased Glc-6-Pase, HGP is decreased in fasting, due to a marked decrease in the substrate level (Glc-6-P) in vivo; and (2) the impairment in peripheral insulin sensitivity in fasting is due to a decrease in the glycolytic, and not the glycogen-synthetic, pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3