Ultrasound reverses chemoresistance in breast cancer stem cell like cells by altering ABCG2 expression

Author:

Guo Lijuan1,Zheng Pengfei2,Fan Huijun1,Wang Haiyan1,Xu Wenzhong1,Zhou Wenyan1

Affiliation:

1. Ultrasonography Department, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, People’s Republic of China

2. Department of Thyroid Breast and Vascular Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, People’s Republic of China

Abstract

Doxorubicin (DOX) resistance in breast cancer largely results from the breast cancer stem cell like cells (BCSCs) which could be targetted to improve the efficacy of chemotherapy. Cell permeabilization using microbubbles (MBs) and ultrasound (US) have the potential for delivering molecules into the cytoplasm. We aim to evaluate a new methodology of US on BCSCs. First, our findings indicated that ALDHA1+ spheres which were derived from fresh primary breast cancer samples displayed stem cell like features and were resistant to DOX. In patient cohort, we revealed the presence of a variable fraction of ALDHA1+cells in nine out of ten. We, for the first time, showed a new US-MB treatment condition which could be used on ALDHA1+ BCSCs by fluorescence measurement and calcein assay. Next, we demonstrated the efficacy of combined treatment on human BCSCs in vitro and in vivo using DOX and US-MB: the combined treatment with much reduced drug dosage significantly suppressed the stem cell like features of BCSCs and induced BCSCs apoptosis. Furthermore, we suggested that decreased ABCG2 level might be one of the mechanisms by which US-MB medicated DOX treatment. In conclusion, this new US-MB treatment condition has clinical potential in breast cancer therapy by targetting BCSCs; thereby holding benefits for breast cancer patients.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3