Stochasticity and Drug Effects in Dynamical Model for Cancer Stem Cells

Author:

Mori Ludovico1,Ben Amar Martine12ORCID

Affiliation:

1. Laboratoire de Physique de l’Ecole Normale Supérieure, Ecole Normale Supérieure, Université PSL, CNRS, 75005 Paris, France

2. Institut Universitaire de Cancérologie, Faculté de Médecine, Sorbonne Université, 91 Bd de l’Hôpital, 75013 Paris, France

Abstract

The Cancer Stem Model allows for a dynamical description of cancer colonies which accounts for the existence of different families of cells, namely stem cells, highly proliferating and quasi-immortal, and differentiated cells, both undergoing cellular processes under numerous activated pathways. In the present work, we investigate a dynamical model numerically, as a system of coupled differential equations, and include a plasticity mechanism, of differentiated cells turning into a stem state if the stem concentration drops low. We are particularly interested in the stability of the model once we introduce stochastically evolving parameters, associated with environmental and cellular intrinsic variabilities, as well as the response of the model after introducing a drug therapy. As long as we stay within the characteristic time scale of the system, defined on the base of the needed time for the trajectories to converge on stable states, we observe that the system remains stable for the main parameters evolving stochastically according to white noise. As for the drug treatments, we discuss a model both for the kinetics and the dynamics of the substance in the organism, and then consider the impact of different types of therapies in a few particular examples, outlining some interesting mechanisms, such as the tumor growth paradox, that possibly impact the outcome of therapy significantly.

Funder

ITMO Cancer of Aviesan

Inserm

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3