Biochemical and functional characterization of OsCSD3, a novel CuZn superoxide dismutase from rice

Author:

Prakash Sanyal Ravi12,Samant Amol1,Prashar Vishal3,Sharan Misra Hari12,Saini Ajay12

Affiliation:

1. Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

2. Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, Maharashtra, India

3. Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

Abstract

Superoxide dismutases (SODs, EC 1.15.1.1) belong to an important group of antioxidant metalloenzymes. Multiple SODs exist for scavenging of reactive oxygen species (ROS) in different cellular compartments to maintain an intricate ROS balance. The present study deals with molecular and biochemical characterization of CuZn SOD encoded by LOC_Os03g11960 (referred to as OsCSD3), which is the least studied among the four rice isozymes. The OsCSD3 showed higher similarity to peroxisomal SODs in plants. The OsCSD3 transcript was up-regulated in response to salinity, drought, and oxidative stress. Full-length cDNA encoding OsCSD3 was cloned and expressed in Escherichia coli and analyzed for spectral characteristics. UV (ultraviolet)–visible spectroscopic analysis showed evidences of d–d transitions, while circular dichroism analysis indicated high β-sheet content in the protein. The OsCSD3 existed as homodimer (∼36 kDa) with both Cu2+ and Zn2+ metal cofactors and was substantially active over a wide pH range (7.0–10.8), with optimum pH of 9.0. The enzyme was sensitive to diethyldithiocarbamate but insensitive to sodium azide, which are the characteristics features of CuZn SODs. The enzyme also exhibited bicarbonate-dependent peroxidase activity. Unlike several other known CuZn SODs, OsCSD3 showed higher tolerance to hydrogen peroxide and thermal inactivation. Heterologous overexpression of OsCSD3 enhanced tolerance of E. coli sod double-knockout (ΔsodA ΔsodB) mutant and wild-type strain against methyl viologen-induced oxidative stress, indicating the in vivo function of this enzyme. The results show that the locus LOC_Os03g11960 of rice encodes a functional CuZn SOD with biochemical characteristics similar to the peroxisomal isozymes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference66 articles.

1. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants;Gill;Plant Physiol. Biochem.,2010

2. Superoxide dismutase and stress tolerance;Bowler;Annu. Rev. Plant Physiol. Plant Mol. Biol.,1992

3. Superoxide radical and superoxide dismutases;Fridovich;Annu. Rev. Biochem.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3