MODEL OF STRESS-STRAIN STATE OF THREE-LAYERED REINFORCED CONCRETE STRUCTURE BY THE FINITE ELEMENT METHODS

Author:

Tho Vu DinhORCID,Korol ElenaORCID,Rimshin Vladimir,Anh Pham TuanORCID

Abstract

The object of the study is multi-layer reinforced concrete structures of concrete with various physical and mechanical characteristics of materials - concrete and reinforcement under the influence of loading. Analysis of the stress state of multilayer reinforced concrete beams by using different materials is a complex problem due to the different mechanical and physical characteristics of materials and the cracking behavior of concrete. This article presents an analysis of the stress-strain state of three-layered reinforced concrete structures using the finite element method in the program ANSYS Mechanical. Numerical modeling allows on ANSYS allows combining different combinations of loads, the variability of the strength and deformation characteristics of materials and various types of reinforcement in multilayer reinforced concrete beams. Comparison is made between the experimental results, numerical results and finite element analyses with respect to initial crack formation and the ultimate load capacity of beams. The results of the study were shown that as the grade of concrete in the external layer increases from B15 to B20 and the grade of lightweight concrete in the internal layer increases from B0.75 to B1.5, the crack resistance can be increased by 59.7% and the bearing capacity of the test beam is increased by 16.4%. When the thickness of the external layers varies from 40mm to 80mm, making the crack resistance increased by 47.5% and the bearing capacity of three-layer concrete beams greatly increased by 6.7%. The obtained scientific results enable to determine rational parameters for modeling various structural solutions of multilayer reinforced concrete structures.

Publisher

Publishing House ASV (Izdatelstvo ASV)

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3