Author:
Hassan Fayrouz H. F., ,Ali Khaled A. Y.,Ahmed Salwa A. M., ,
Abstract
Biomimicry inspired architects to solve complex design problems and develop adaptive solutions for enhancing the environmental quality. Fields of inspiration include energy efficiency, natural ventilation, daylighting, and structural stability. In this paper, 144 biomimicry-inspired building skin alternatives have been developed to improve daylighting performance in office buildings in Assiut City, Egypt; 72 alternatives are of 0.5 m frame depth, and other 72 alternatives are of 1.0 m frame depth. Two levels of biomimicry; namely, the organism level (snakeskin) and the behavior level (plants tropism), have been adopted. Alternatives have been developed to be simulated ClimateStudio plug-in for Rhino in accordance with the international rating system leadership in energy and environmental design (LEED v4.1). The evaluation criteria are spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE), Annual Average Lux (AAl), and Spatial Distributing Glare (sDG). An evaluation point system has been developed to evaluate alternatives using Analytical Hierarchy Process (AHP) based on the feedback of 14 faculty of architecture members. Nine building skin alternatives developed succeeded to achieve notable improvement (from 16.69% to 33.73%) compared to the base cases. In general, the 1.0 m frame-depth alternatives achieved better results in improving daylighting performance than the 0.5 m frame-depth alternatives. The most effective parameter in improving daylighting performance was the rotation angle of the skin unit used, to be followed by the distance between the skin and the building façade, the solid-to-void ratio of the skin, the number of units constituting the skin system, and the horizontal bending distance of the skin unit, respectively.
Subject
Energy (miscellaneous),Renewable Energy, Sustainability and the Environment