Affiliation:
1. School of Architecture, Hongik University, Seoul 04066, Republic of Korea
Abstract
The quality of indoor lighting significantly influences human well-being, emphasizing the need to integrate lighting planning into the architectural design process. To optimize indoor lighting conditions, light environment simulations are commonly employed. While much of the relevant literature clearly shows that simulations are widely used to predict lighting environments, there is limited active research validating these simulations. Therefore, this study aimed to assess the alignment between actual measurements and simulations, specifically focusing on daylight-induced glare. To achieve this, a comparative analysis and verification of glare levels between simulations and actual measurements were conducted that accounted for glare location and direction. Disparities between the simulated and measured glare levels were revealed contingent on the glare location and direction. These variations primarily arose from the simulation’s utilization of a fisheye field of view (FOV) for glare measurement. To improve the accuracy of glare analysis in simulations, it is advisable to follow the standards related to the human perception of glare, such as the human field of view (FOV), instead of solely depending on a fisheye FOV. The study’s limitations include challenges in environmental replication, minor measurement errors, and tree branch shading interference. Despite the potential for simulations to not replicate temporary glare effects, consistent differences with actual measurements indicate that the fisheye FOV was a key contributing factor.
Funder
National Research Foundation of Korea (NRF) grant issued by the Korean government
2023 Hongik University Research Fund
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献