Comparative Validation of Light Environment Simulation with Actual Measurements

Author:

Park Juhyang1,Lee Kyungsun1,Kim Kirim1

Affiliation:

1. School of Architecture, Hongik University, Seoul 04066, Republic of Korea

Abstract

The quality of indoor lighting significantly influences human well-being, emphasizing the need to integrate lighting planning into the architectural design process. To optimize indoor lighting conditions, light environment simulations are commonly employed. While much of the relevant literature clearly shows that simulations are widely used to predict lighting environments, there is limited active research validating these simulations. Therefore, this study aimed to assess the alignment between actual measurements and simulations, specifically focusing on daylight-induced glare. To achieve this, a comparative analysis and verification of glare levels between simulations and actual measurements were conducted that accounted for glare location and direction. Disparities between the simulated and measured glare levels were revealed contingent on the glare location and direction. These variations primarily arose from the simulation’s utilization of a fisheye field of view (FOV) for glare measurement. To improve the accuracy of glare analysis in simulations, it is advisable to follow the standards related to the human perception of glare, such as the human field of view (FOV), instead of solely depending on a fisheye FOV. The study’s limitations include challenges in environmental replication, minor measurement errors, and tree branch shading interference. Despite the potential for simulations to not replicate temporary glare effects, consistent differences with actual measurements indicate that the fisheye FOV was a key contributing factor.

Funder

National Research Foundation of Korea (NRF) grant issued by the Korean government

2023 Hongik University Research Fund

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3