The Spectral Behavior of Ground Coseismic Motion in the Baikal Region: Effect of Seasonal Thawing–Freezing Cycles

Author:

Dzhurik V.I.,Bryzhak E.V.,Serebrennikov S.P.,Eskin A.Yu.

Abstract

Abstract —Reliable solution of theoretical and applied seismological problems requires the knowledge of natural factors that influence ground motion induced by earthquakes. The effect of seasonal freezing and thawing on the behavior of coseismic ground motion in the Baikal region has been studied using data on local geology, earthquake source parameters, seismogeology, and seismic risk zoning for East Siberia. East Siberia, including the highly seismic Baikal region, is located in a temperate and cold, sharply continental climate, with the mean annual air temperature locally falling below –10 ºC. In this respect, the knowledge of seasonal variations in the ground motion spectra in different seismic-climatic zones of the region is of special importance. We study the dynamic parameters of seismic signals and their variations caused by seasonal thawing and freezing of the ground, using calculated spectra of selected earthquakes that were recorded by 0.5–20 Hz digital seismic stations at a sampling interval (Δ) of 0.01 s. Spectral analysis was applied to three-component records of more than two hundred M = 2.8 (K = 9–14) earthquakes that occurred in the region for the past twenty years at distances from 32 to 280 km from the stations. The influence of seasonal temperature variations on the frequency responses of coseismic ground motion is discussed for the case of two seismic stations in zones of continuous and sporadic permafrost. The results are complemented by generalized data from other seismic stations located in different permafrost conditions within the Baikal region. The effect of seasonal freezing and thawing turns out to be the most prominent at frequencies above 5–6 Hz and depend on the properties and thermal state of soils beneath the stations. At the same time, they are more prominent in thawing than in freezing curves for any soil, including relatively solid bedrock. The spectral behavior of earthquake-induced ground motion is associated with variations in wave amplitudes, which correlate with seasonal temperature variations. The reported results have implications for geophysical prospecting, seismic-risk zoning, and prediction of shaking intensity of large earthquakes, which require due regard for local permafrost conditions.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3