Internal friction investigation of the natural and compressed birch (Betula pendula Roth) wood

Author:

Russu Aleksandr12,Shamaev Vladimir1,Razinkov Egor1,Zimelis Andris3

Affiliation:

1. Voronezh State University of Forestry and Technologies named after G.F. Morozov

2. FGBOU VO «Voronezhskiy gosudarstvennyy lesotehnicheskiy universitet imeni G. F. Morozova», ul. Timiryazeva, 8, g. Voronezh, 394087, Rossiya

3. Tehnicheskiy universitet g. Riga

Abstract

A method is proposed for approximating of the internal friction of wood based on the Boltzmann superposition principle, which describes the complex viscoelastic behavior of the system by a linear combination of components. Prepared samples of natural and modified wood, sawn from the stem part of drooping birch (Betula pendula ROTH) trees growing in the Khlevensky Forestry (52.184130, 39.110463, ASL 157m), were exposed to radial and tangential directions with ultrasound (frequency 24.5 kHz, exposure 0 -20 minutes, step 5 minutes) and pulsed magnetic field (strength - 0.3 T, exposure 0-2 minutes, step 0.5 minutes). Next, the internal friction of the samples was studied on an experimental setup using the logarithmic damping decrement based on free-bending vibrations. The absolute values of the dimensionless viscosity coefficient κ included in the model as the main structural parameter for samples of natural and modified wood were obtained at a significance level of p=0.95: for moisture content from 4.3 to 15; for ultrasound 4.6 to 20; for a pulsed magnetic field from 3.6 to 7.7. The absolute values of the dimensionless scaling factors μ for natural and modified wood samples range from 1.92 to 3.91. The highest approximation value was achieved when testing natural wood samples of silver birch (Betula pendula ROTH): R2=0.98 for the radial direction, the influence of the humidity factor, and R2=0.85 for the tangential direction, the influence of the ultrasonic factor, as well as for a sample of modified wood brand "Destam" in the radial direction R2=0.96, the influence of the factor of the pulsed magnetic field.

Publisher

Voronezh State University of Forestry and Technologies named after G.F. Morozov

Subject

General Medicine

Reference31 articles.

1. Cai C., Zhou F. Sorption characteristic of thermally modified wood at varying relative humidity. Forests. 2022; 13(10):1687.DOI:https://doi.org/10.3390/f13101687, Cai C., Zhou F. Sorption characteristic of thermally modified wood at varying relative humidity. Forests. 2022; 13(10):1687.DOI:https://doi.org/10.3390/f13101687

2. Ali M. R., Abdullah U. H. Hydrothermal modification of wood: A review. Polymers.2021; 13(16): 2612. DOI: https://doi.org/10.3390/polym13162612., Ali M. R., Abdullah U. H. Hydrothermal modification of wood: A review. Polymers.2021; 13(16): 2612. DOI: https://doi.org/10.3390/polym13162612.

3. Romano A., Cappellin L. Exploring volatile organic compound emission from thermally modified wood by PTR-ToF-MS. Analyst. 2022;147 (22): 5138-5148. DOI: http://dx.doi.org/10.1039/D2AN01376B, Romano A., Cappellin L. Exploring volatile organic compound emission from thermally modified wood by PTR-ToF-MS. Analyst. 2022;147 (22): 5138-5148. DOI: http://dx.doi.org/10.1039/D2AN01376B

4. Wang Y., Zhang R. Improvement on dimensional stability and mold resistance of wood modified by tannin acid and tung oil.Holzforschung. 2022; 76 (10): 929-940. DOI: https://doi.org/10.1515/hf-2022-0062, Wang Y., Zhang R. Improvement on dimensional stability and mold resistance of wood modified by tannin acid and tung oil.Holzforschung. 2022; 76 (10): 929-940. DOI: https://doi.org/10.1515/hf-2022-0062

5. Hu J. Manufacturing and characterization of modified wood with in situ polymerization and Cross-Linking of Water-Soluble Monomers on Wood Cell Walls. Polymers. 2022; 14(16):3299. DOI: https://doi.org/10.3390/polym14163299, Hu J. Manufacturing and characterization of modified wood with in situ polymerization and Cross-Linking of Water-Soluble Monomers on Wood Cell Walls. Polymers. 2022; 14(16):3299. DOI: https://doi.org/10.3390/polym14163299

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3