Integration of Artificial Intelligence Decision Aids to Reduce Workload and Enhance Efficiency in Thyroid Nodule Management

Author:

Tong Wen-Juan1,Wu Shao-Hong1,Cheng Mei-Qing1,Huang Hui1,Liang Jin-Yu1,Li Chao-Qun1,Guo Huan-Ling1,He Dan-Ni2,Liu Yi-Hao3,Xiao Han1,Hu Hang-Tong1,Ruan Si-Min1,Li Ming-De1,Lu Ming-De14,Wang Wei1

Affiliation:

1. Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

2. Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China

3. Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

4. Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

Abstract

ImportanceTo optimize the integration of artificial intelligence (AI) decision aids and reduce workload in thyroid nodule management, it is critical to incorporate personalized AI into the decision-making processes of radiologists with varying levels of expertise.ObjectiveTo develop an optimized integration of AI decision aids for reducing radiologists’ workload while maintaining diagnostic performance compared with traditional AI-assisted strategy.Design, Setting, and ParticipantsIn this diagnostic study, a retrospective set of 1754 ultrasonographic images of 1048 patients with 1754 thyroid nodules from July 1, 2018, to July 31, 2019, was used to build an optimized strategy based on how 16 junior and senior radiologists incorporated AI-assisted diagnosis results with different image features. In the prospective set of this diagnostic study, 300 ultrasonographic images of 268 patients with 300 thyroid nodules from May 1 to December 31, 2021, were used to compare the optimized strategy with the traditional all-AI strategy in terms of diagnostic performance and workload reduction. Data analyses were completed in September 2022.Main Outcomes and MeasuresThe retrospective set of images was used to develop an optimized integration of AI decision aids for junior and senior radiologists based on the selection of AI-assisted significant or nonsignificant features. In the prospective set of images, the diagnostic performance, time-based cost, and assisted diagnosis were compared between the optimized strategy and the traditional all-AI strategy.ResultsThe retrospective set included 1754 ultrasonographic images from 1048 patients (mean [SD] age, 42.1 [13.2] years; 749 women [71.5%]) with 1754 thyroid nodules (mean [SD] size, 16.4 [10.6] mm); 748 nodules (42.6%) were benign, and 1006 (57.4%) were malignant. The prospective set included 300 ultrasonographic images from 268 patients (mean [SD] age, 41.7 [14.1] years; 194 women [72.4%]) with 300 thyroid nodules (mean [SD] size, 17.2 [6.8] mm); 125 nodules (41.7%) were benign, and 175 (58.3%) were malignant. For junior radiologists, the ultrasonographic features that were not improved by AI assistance included cystic or almost completely cystic nodules, anechoic nodules, spongiform nodules, and nodules smaller than 5 mm, whereas for senior radiologists the features that were not improved by AI assistance were cystic or almost completely cystic nodules, anechoic nodules, spongiform nodules, very hypoechoic nodules, nodules taller than wide, lobulated or irregular nodules, and extrathyroidal extension. Compared with the traditional all-AI strategy, the optimized strategy was associated with increased mean task completion times for junior radiologists (reader 11, from 15.2 seconds [95% CI, 13.2-17.2 seconds] to 19.4 seconds [95% CI, 15.6-23.3 seconds]; reader 12, from 12.7 seconds [95% CI, 11.4-13.9 seconds] to 15.6 seconds [95% CI, 13.6-17.7 seconds]), but shorter times for senior radiologists (reader 14, from 19.4 seconds [95% CI, 18.1-20.7 seconds] to 16.8 seconds [95% CI, 15.3-18.3 seconds]; reader 16, from 12.5 seconds [95% CI, 12.1-12.9 seconds] to 10.0 seconds [95% CI, 9.5-10.5 seconds]). There was no significant difference in sensitivity (range, 91%-100%) or specificity (range, 94%-98%) between the 2 strategies for readers 11 to 16.Conclusions and RelevanceThis diagnostic study suggests that an optimized AI strategy in thyroid nodule management may reduce diagnostic time-based costs without sacrificing diagnostic accuracy for senior radiologists, while the traditional all-AI strategy may still be more beneficial for junior radiologists.

Publisher

American Medical Association (AMA)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3