FFA-GPT: an automated pipeline for fundus fluorescein angiography interpretation and question-answer

Author:

Chen XiaolanORCID,Zhang Weiyi,Xu Pusheng,Zhao Ziwei,Zheng YingfengORCID,Shi DanliORCID,He MingguangORCID

Abstract

AbstractFundus fluorescein angiography (FFA) is a crucial diagnostic tool for chorioretinal diseases, but its interpretation requires significant expertise and time. Prior studies have used Artificial Intelligence (AI)-based systems to assist FFA interpretation, but these systems lack user interaction and comprehensive evaluation by ophthalmologists. Here, we used large language models (LLMs) to develop an automated interpretation pipeline for both report generation and medical question-answering (QA) for FFA images. The pipeline comprises two parts: an image-text alignment module (Bootstrapping Language-Image Pre-training) for report generation and an LLM (Llama 2) for interactive QA. The model was developed using 654,343 FFA images with 9392 reports. It was evaluated both automatically, using language-based and classification-based metrics, and manually by three experienced ophthalmologists. The automatic evaluation of the generated reports demonstrated that the system can generate coherent and comprehensible free-text reports, achieving a BERTScore of 0.70 and F1 scores ranging from 0.64 to 0.82 for detecting top-5 retinal conditions. The manual evaluation revealed acceptable accuracy (68.3%, Kappa 0.746) and completeness (62.3%, Kappa 0.739) of the generated reports. The generated free-form answers were evaluated manually, with the majority meeting the ophthalmologists’ criteria (error-free: 70.7%, complete: 84.0%, harmless: 93.7%, satisfied: 65.3%, Kappa: 0.762–0.834). This study introduces an innovative framework that combines multi-modal transformers and LLMs, enhancing ophthalmic image interpretation, and facilitating interactive communications during medical consultation.

Funder

Start-up Fund for RAPs under the Strategic Hiring Scheme

National Natural Science Foundation of China

Global STEM Professorship Scheme from HKSAR

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3