Machine Learning–Based Prediction of Hospitalization During Chemoradiotherapy With Daily Step Counts

Author:

Friesner Isabel D.1,Feng Jean12,Kalnicki Shalom3,Garg Madhur3,Ohri Nitin3,Hong Julian C.14

Affiliation:

1. Bakar Computational Health Sciences Institute, University of California, San Francisco

2. Department of Epidemiology and Biostatistics, University of California, San Francisco

3. Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York

4. Department of Radiation Oncology, University of California, San Francisco

Abstract

ImportanceToxic effects of concurrent chemoradiotherapy (CRT) can cause treatment interruptions and hospitalizations, reducing treatment efficacy and increasing health care costs. Physical activity monitoring may enable early identification of patients at high risk for hospitalization who may benefit from proactive intervention.ObjectiveTo develop and validate machine learning (ML) approaches based on daily step counts collected by wearable devices on prospective trials to predict hospitalizations during CRT.Design, Setting, and ParticipantsThis study included patients with a variety of cancers enrolled from June 2015 to August 2018 on 3 prospective, single-institution trials of activity monitoring using wearable devices during CRT. Patients were followed up during and 1 month following CRT. Training and validation cohorts were generated temporally, stratifying for cancer diagnosis (70:30). Random forest, neural network, and elastic net–regularized logistic regression (EN) were trained to predict short-term hospitalization risk based on a combination of clinical characteristics and the preceding 2 weeks of activity data. To predict outcomes of activity data, models based only on activity-monitoring features and only on clinical features were trained and evaluated. Data analysis was completed from January 2022 to March 2023.Main Outcomes and MeasuresModel performance was evaluated in terms of the receiver operating characteristic area under curve (ROC AUC) in the stratified temporal validation cohort.ResultsStep counts from 214 patients (median [range] age, 61 [53-68] years; 113 [52.8%] male) were included. EN based on step counts and clinical features had high predictive ability (ROC AUC, 0.83; 95% CI, 0.66-0.92), outperforming random forest (ROC AUC, 0.76; 95% CI, 0.56-0.87; P = .02) and neural network (ROC AUC, 0.80; 95% CI, 0.71-0.88; P = .36). In an ablation study, the EN model based on only step counts demonstrated greater predictive ability than the EN model with step counts and clinical features (ROC AUC, 0.85; 95% CI, 0.70-0.93; P = .09). Both models outperformed the EN model trained on only clinical features (ROC AUC, 0.53; 95% CI, 0.31-0.66; P < .001).Conclusions and RelevanceThis study developed and validated a ML model based on activity-monitoring data collected during prospective clinical trials. Patient-generated health data have the potential to advance predictive ability of ML approaches. The resulting model from this study will be evaluated in an upcoming multi-institutional, cooperative group randomized trial.

Publisher

American Medical Association (AMA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3