Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study

Author:

Liu ChangORCID,Zhang KaiORCID,Yang XiaodongORCID,Meng BingbingORCID,Lou JingshengORCID,Liu YanhongORCID,Cao JiangbeiORCID,Liu KexuanORCID,Mi WeidongORCID,Li HaoORCID

Abstract

Abstract Background Myocardial injury after noncardiac surgery (MINS) is an easily overlooked complication but closely related to postoperative cardiovascular adverse outcomes; therefore, the early diagnosis and prediction are particularly important. Objective We aimed to develop and validate an explainable machine learning (ML) model for predicting MINS among older patients undergoing noncardiac surgery. Methods The retrospective cohort study included older patients who had noncardiac surgery from 1 northern center and 1 southern center in China. The data sets from center 1 were divided into a training set and an internal validation set. The data set from center 2 was used as an external validation set. Before modeling, the least absolute shrinkage and selection operator and recursive feature elimination methods were used to reduce dimensions of data and select key features from all variables. Prediction models were developed based on the extracted features using several ML algorithms, including category boosting, random forest, logistic regression, naïve Bayes, light gradient boosting machine, extreme gradient boosting, support vector machine, and decision tree. Prediction performance was assessed by the area under the receiver operating characteristic (AUROC) curve as the main evaluation metric to select the best algorithms. The model performance was verified by internal and external validation data sets with the best algorithm and compared to the Revised Cardiac Risk Index. The Shapley Additive Explanations (SHAP) method was applied to calculate values for each feature, representing the contribution to the predicted risk of complication, and generate personalized explanations. Results A total of 19,463 eligible patients were included; among those, 12,464 patients in center 1 were included as the training set; 4754 patients in center 1 were included as the internal validation set; and 2245 in center 2 were included as the external validation set. The best-performing model for prediction was the CatBoost algorithm, achieving the highest AUROC of 0.805 (95% CI 0.778‐0.831) in the training set, validating with an AUROC of 0.780 in the internal validation set and 0.70 in external validation set. Additionally, CatBoost demonstrated superior performance compared to the Revised Cardiac Risk Index (AUROC 0.636; P<.001). The SHAP values indicated the ranking of the level of importance of each variable, with preoperative serum creatinine concentration, red blood cell distribution width, and age accounting for the top three. The results from the SHAP method can predict events with positive values or nonevents with negative values, providing an explicit explanation of individualized risk predictions. Conclusions The ML models can provide a personalized and fairly accurate risk prediction of MINS, and the explainable perspective can help identify potentially modifiable sources of risk at the patient level.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3