Machine Learning in Orthodontics: Introducing a 3d Auto-segmentation and Auto-landmark Finder of Cbct Images To Assess Maxillary Constriction in Unilateral Impacted Canine patients

Author:

Chen Si,Wang Li,Li Gang,Wu Tai-Hsien,Diachina Shannon,Tejera Beatriz,Kwon Jane Jungeun,Lin Feng-Chang,Lee Yan-Ting,Xu Tianmin,Shen Dinggang,Ko Ching-Chang

Abstract

ABSTRACT Objectives To (1) introduce a novel machine learning method and (2) assess maxillary structure variation in unilateral canine impaction for advancing clinically viable information. Materials and Methods A machine learning algorithm utilizing Learning-based multi-source IntegratioN frameworK for Segmentation (LINKS) was used with cone-beam computed tomography (CBCT) images to quantify volumetric skeletal maxilla discrepancies of 30 study group (SG) patients with unilaterally impacted maxillary canines and 30 healthy control group (CG) subjects. Fully automatic segmentation was implemented for maxilla isolation, and maxillary volumetric and linear measurements were performed. Analysis of variance was used for statistical evaluation. Results Maxillary structure was successfully auto-segmented, with an average dice ratio of 0.80 for three-dimensional image segmentations and a minimal mean difference of two voxels on the midsagittal plane for digitized landmarks between the manually identified and the machine learning–based (LINKS) methods. No significant difference in bone volume was found between impaction ([2.37 ± 0.34] 104 mm3) and nonimpaction ([2.36 ± 0.35] 104 mm3) sides of SG. The SG maxillae had significantly smaller volumes, widths, heights, and depths (P < .05) than CG. Conclusions The data suggest that palatal expansion could be beneficial for those with unilateral canine impaction, as underdevelopment of the maxilla often accompanies that condition in the early teen years. Fast and efficient CBCT image segmentation will allow large clinical data sets to be analyzed effectively.

Publisher

The Angle Orthodontist (EH Angle Education & Research Foundation)

Subject

Orthodontics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3