Enchanted Determinism: Power without Responsibility in Artificial Intelligence

Author:

Campolo Alexander,Crawford Kate

Abstract

Deep learning techniques are growing in popularity within the field of artificial intelligence (AI). These approaches identify patterns in large scale datasets, and make classifications and predictions, which have been celebrated as more accurate than those of humans. But for a number of reasons, including nonlinear path from inputs to outputs, there is a dearth of theory that can explain why deep learning techniques work so well at pattern detection and prediction. Claims about “superhuman” accuracy and insight, paired with the inability to fully explain how these results are produced, form a discourse about AI that we call enchanted determinism. To analyze enchanted determinism, we situate it within a broader epistemological diagnosis of modernity: Max Weber’s theory of disenchantment. Deep learning occupies an ambiguous position in this framework. On one hand, it represents a complex form of technological calculation and prediction, phenomena Weber associated with disenchantment. On the other hand, both deep learning experts and observers deploy enchanted, magical discourses to describe these systems’ uninterpretable mechanisms and counter-intuitive behavior. The combination of predictive accuracy and mysterious or unexplainable properties results in myth-making about deep learning’s transcendent, superhuman capacities, especially when it is applied in social settings. We analyze how discourses of magical deep learning produce techno-optimism, drawing on case studies from game-playing, adversarial examples, and attempts to infer sexual orientation from facial images. Enchantment shields the creators of these systems from accountability while its deterministic, calculative power intensifies social processes of classification and control.

Publisher

Society for Social Studies of Science (4S)

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3