Critical Diagenetic Features Controlling Intergranular Flow Paths and Matrix Permeability in the Codell Sandstone, Northeastern Colorado

Author:

Medina Daniel Alonso1,Budd David1

Affiliation:

1. Department of Geological Sciences, University of Colorado, Boulder, CO

Abstract

The Codell Sandstone is a hydrocarbon-bearing, tight sand (permeability <0.1 mD) that is an active target for unconventional hydrocarbon production in the Denver-Julesburg Basin. In northeastern Colorado, the intergranular microporous drainage network within this clay-rich sandstone is poorly understood, with a strong diagenetic control suggested by the lack of correlation between permeability and depositional facies. Core samples from the Wattenberg Field and Redtail areas in Weld County were used to identify which diagenetic processes were most important in developing a connected pore network. Thirteen diagenetic features were defined using thin-section petrography and electron microprobe mineralogical phase mapping, and skeletonized flow paths were delineated by epifluorescence imaging. Quartz overgrowths, mechanical compaction, and clay cements (illite, chlorite, and kaolinite) are better developed in the laminated facies than the burrowed facies. Authigenic calcite and pyrite, and dissolution of framework grains are equally developed in both types of facies. Cumulative 2D flow-path lengths positively co-vary with permeability, indicating that the skeletonized paths capture the features that control permeability. The longest flow paths in high permeability (≥0.09 mD) samples follow micropores created along the periphery of framework grains where the discontinuous quartz overgrowths abut clays. Micropores within intergranular clay masses (detrital, pore-filling cements, and authigenic replacements) associate with shorter flow paths that dominate in low permeability (≤ 0.01 mD) samples and feed the longer paths in high permeability samples. While compaction and all types of cements had a negative impact on the original pore network, the development of long contacts between quartz overgrowths and mechanically juxtaposed grains eventually became beneficial to the drainage system. The increased surface area along those contacts increased the continuity of the flow paths developed along grain surfaces. All observations indicate that the minute quartz overgrowths, and the high authigenic rugosity they created along grain boundaries, were a key diagenetic event in creating the most efficient drainage networks that now facilitate the movement of hydrocarbons at the core-plug scale.

Publisher

Rocky Mountain Association of Geologists

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3