Sulphate reduction, organic matter decomposition and pyrite formation

Author:

Abstract

Laboratory, field, and theoretical studies have shown that the rate of bacterial sulphate reduction during early diagenesis depends primarily on the reactivity of sedimentary organic matter whose decomposition follows first-order kinetics, with rate constants varying over six orders of magnitude. Decay rates decrease with decreasing sediment burial rate and, for a given sediment, with depth, because o f the successive utilization by bacteria of less and less reactive organic compounds. High burial (and bioturbation) rates enable reactive compounds to become available for sulphate reduction, at depth, which otherwise would be destroyed by molecular oxygen at or above the sediment-water interface. An important consequence of bacterial sulphate reduction is the formation of sedimentary pyrite, FeS 2 . In normal marine sediments (those deposited in oxygenated bottom waters) pyrite formation is limited by the concentration and reactivity of organic matter, whereas in euxinic (sulphidic) basins pyrite is limited by the abundance and reactivity of detrital iron minerals, and in non-saline swamp and lake sediments by the low levels of dissolved sulphate found in fresh water. Because of these differences in limiting factors, the three environments can be distinguished in both modern sediments and ancient rocks by plots of organic carbon, C against pyrite sulphur, S. Values of the C:S ratio based on theoretical calculations indicate that worldwide the bulk of organic matter burial has shifted considerably between these environments over Phanerozoic time.

Publisher

The Royal Society

Subject

General Engineering

Reference30 articles.

1. Diagenetic processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P);Aller R. C.;Adv. Geophys.,1980

2. Secular variations in amounts and environments of organic carbon burial during the Phanerozoic;Arthur M. A.;Geol. Newsl.,1983

3. Sulfate reduction, pyrite formation and the oceanic sulfur budget. In The changing chemistry of the oceans;Berner R. A.;Nobel Symposium 20, (ed. D. Dyrssen & D. Jagner),1972

4. Berner R. A. 1980 Early diagenesis: a theoretical approach. 241 pp. Princeton N .J.: University Press.

5. Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3