Detrital zircon geochronology of the Aycross Formation (Eocene) near Togwotee Pass, western Wind River Basin, Wyoming

Author:

Malone David1,Craddock John2,Garber Kacey1,Trela Jarek1

Affiliation:

1. Department of Geology-Geography, Illinois State University

2. Geology Department, Macalester College

Abstract

The Aycross Formation is the basal unit of the Absaroka Volcanic Supergroup in the southern Absaroka Range and consists of volcanic sandstone, mudstone, breccia, tuff and conglomerate. The Aycross was deposited during the waning stages of the Laramide Orogeny and the earliest phases of volcanism in the Absaroka Range. U-Pb geo-chronology using laser ablation multicollector inductively coupled plasma mass spectrometry LA-ICP-MS was performed on detrital zircons collected from an Aycross sandstone bed at Falls Campground east of Togwotee Pass. The detrital zircon age spectrum ranged fom ca 47 to 2856 Ma. Peak ages, as indicated by the zircon age probability density plot are ca. 51, 61, and 72 Ma. Tertiary zircons were the most numerous (n = 32), accounting for 42% of the zircon ages spectrum. Of these 19 are Eocene, and 13 are Paleocene, which are unusual ages in the Wyoming-Idaho-Montana area. Mesozoic zircons (n = 21) comprise 27% of the age spectrum and range in age from 68–126 Ma; all but one being late Cretaceous in age. No Paleozoic zircons are present. Proterozoic zircons range in age from 1196–2483 Ma, and also consist of 27% of the age spectrum. The maximum depositional age of the Aycross Formation is estimated to be 50.05 +/− 0.65 Ma based on weighted mean of the eight youngest grains. The Aycross Formation detrital zircon age spectrum is distinct from that of other 49–50 Ma rocks in northwest Wyoming, which include the Hominy Peak and Wapiti Formations and Crandall Conglomerate. The Aycross must have been derived largely from distal westerly source areas, which include the late Cretaceous and Paleocene Bitteroot Lobe of the Idaho Batholith. In contrast, the middle Eocene units further to the north must have been derived from erosion of the Archean basement-cored uplift of the Laramide Foreland in southwest Montana.

Funder

National Science Foundation

Publisher

Rocky Mountain Association of Geologists

Subject

Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fossil Leaves and Fruits of Tetramelaceae (Curcurbitales) from the Eocene of the Rocky Mountain Region, USA, and Their Biogeographic Significance;International Journal of Plant Sciences;2023-03-01

2. The Laramide orogeny: Current understanding of the structural style, timing, and spatial distribution of the classic foreland thick-skinned tectonic system;Laurentia: Turning Points in the Evolution of a Continent;2023-01-23

3. Provenance of early Paleogene strata in the Bighorn Basin (Wyoming, USA): Implications for Laramide tectonism and basin-scale stratigraphic patterns;Tectonic Evolution of the Sevier-Laramide Hinterland, Thrust Belt, and Foreland, and Postorogenic Slab Rollback (180–20 Ma);2022-05-03

4. Timing and structural evolution of the Sevier thrust belt, western Wyoming;Tectonic Evolution of the Sevier-Laramide Hinterland, Thrust Belt, and Foreland, and Postorogenic Slab Rollback (180–20 Ma);2022-05-03

5. Preliminary detrital zircon U-Pb Geochronology of the Wasatch Formation, Powder River Basin, Wyoming;The Mountain Geologist;2019-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3