Evaluation of Intensity Prediction Equations (IPEs) for Small-Magnitude Earthquakes

Author:

Teng Ganyu1ORCID,Baker Jack W.2ORCID,Wald David J.3ORCID

Affiliation:

1. Blume Earthquake Engineering Center, Stanford University, Stanford, California, U.S.A.

2. Stanford University, Stanford, California, U.S.A.

3. U.S. Geological Survey, Golden, Colorado, U.S.A.

Abstract

Abstract This study assesses existing intensity prediction equations (IPEs) for small unspecified magnitude (M ≤3.5) earthquakes at short hypocentral distances (Dh) and explores such earthquakes’ contribution to the felt shaking hazard. In particular, we consider IPEs by Atkinson and Wald (2007) and Atkinson et al. (2014), and evaluate their performance based on “Did You Feel It” (DYFI) reports and recorded peak ground velocities (PGVs) in the central United States. Both IPEs were developed based on DYFI reports in the central and eastern United States with moment magnitudes above Mw 3.0. DYFI reports are often used as the ground truth when evaluating and developing IPEs, but they could be less reliable when there are limited responses for small-magnitude earthquakes. We first compare the DYFI reports with intensities interpolated from recorded PGVs. Results suggest a minimal discrepancy between the two when the intensity is large enough to be felt (i.e., M >2 and Dh<15  km). We then compare intensities from 31,617 DYFI reports of 3049 earthquakes with the two IPEs. Results suggest that both the IPEs match well with observed intensities for 2.0< M <3.0 and Dh<10  km, but the IPE by Atkinson et al. (2014) matches better for larger distances. We also observe that intensities from DYFI reports attenuate faster compared with the two IPEs, especially for distances greater than 10 km. We then group DYFI reports by inferred VS30 as a proxy for site amplification effects. We observe that intensities at sites with VS30 around 300 m/s are consistently higher than at sites with VS30 around 700 m/s and are also closer to the two IPEs. Finally, we conduct hazard disaggregation for earthquakes at close distances (Dh=7.5  km) using the observed records. Results suggest that earthquakes with magnitudes below M 3.0 contribute more than 40% to the occurrence of felt shaking.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3