A Big Problem for Small Earthquakes: Benchmarking Routine Magnitudes and Conversion Relationships with Coda Envelope-Derived Mw in Southern Kansas and Northern Oklahoma

Author:

Shelly David R.1ORCID,Mayeda Kevin2ORCID,Barno Justin3ORCID,Whidden Katherine M.4ORCID,Moschetti Morgan P.1ORCID,Llenos Andrea L.1ORCID,Rubinstein Justin L.5ORCID,Yeck William L.1ORCID,Earle Paul S.1ORCID,Gök Rengin3ORCID,Walter William R.3ORCID

Affiliation:

1. U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, USA

2. Air Force Technical Applications Center, Patrick Air Force Base, Florida, U.S.A.

3. Lawrence Livermore National Laboratory, Livermore, California, U.S.A.

4. University of Utah Seismograph Stations, University of Utah, Salt Lake City, Utah, U.S.A.

5. U.S. Geological Survey Earthquake Science Center, Moffett Field, California, U.S.A.

Abstract

ABSTRACT Earthquake magnitudes are widely relied upon measures of earthquake size. Although moment magnitude (Mw) has become the established standard for moderate and large earthquakes, difficulty in reliably measuring seismic moments for small (generally Mw<4) earthquakes has meant that magnitudes for these events remain plagued by a patchwork of inconsistent measurement scales. Because of this, magnitudes of small earthquakes and statistics derived from them can be biased. Furthermore, because small earthquakes are much more numerous than large ones, many applications, such as seismic hazard modeling, depend critically on analysis of events characterized by magnitudes other than Mw. To assess this problem, we apply coda envelope analysis to reliably determine moment magnitudes for a case study of small earthquakes from northern Oklahoma and southern Kansas. Not surprisingly, we find significant differences among ML, mbLg, and Mw for M ∼2–4 earthquakes examined here. More troublingly, we find that relations designed to convert other magnitudes to Mw, which are relied upon for important applications such as seismic hazard analysis, often increase rather than decrease this bias for our dataset. In our case study, we find that converted magnitudes can result in a systematic bias sometimes exceeding 0.5 magnitude units, a difference that typically corresponds to a factor of ∼3 in seismicity rate. Moreover, we find a correspondingly large bias in Gutenberg–Richter b-values, controlled primarily by inaccurate magnitude scaling in the conversion relationships. Although this study focuses on a relatively small geographic area, we can expect that similar issues exist with varying severity in other regions. Therefore, magnitudes of small earthquakes and their associated statistics, including seismicity rates and b-values, should be treated with caution.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3