Forecasting the Long-Term Spatial Distribution of Earthquakes for the 2023 U.S. National Seismic Hazard Model Using Gridded Seismicity

Author:

Llenos Andrea L.1ORCID,Michael Andrew J.2ORCID,Shumway Allison M.1ORCID,Rubinstein Justin L.2ORCID,Haynie Kirstie L.1ORCID,Moschetti Morgan P.1ORCID,Altekruse Jason M.1ORCID,Milner Kevin R.34ORCID

Affiliation:

1. 1U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, U.S.A.

2. 2U.S. Geological Survey, Earthquake Science Center, Moffett Field, California, U.S.A.

3. 3University of Southern California, Southern California Earthquake Center, Los Angeles, California, U.S.A.

4. 4Now at, U.S. Geological Survey, Geologic Hazards Science Center, Pasadena, California, U.S.A.

Abstract

ABSTRACT Probabilistic seismic hazard analyses such as the U.S. National Seismic Hazard Model (NSHM) typically rely on declustering and spatially smoothing an earthquake catalog to estimate a long-term time-independent (background) seismicity rate to forecast future seismicity. In support of the U.S. Geological Survey’s (USGS) 2023 update to the NSHM, we update the methods used to develop this background or gridded seismicity model component of the NSHM. As in 2018, we use a combination of fixed and adaptive kernel Gaussian smoothing. However, we implement two additional declustering methods to account for the fact that declustering is a nonunique process. These new declustering methods result in different forecasts for the locations of future seismicity, as represented by spatial probability density functions that are later combined with a rate model to produce a full gridded earthquake rate forecast. The method updates, particularly in the separation of the spatial and rate models as well as revised regional boundaries, in some places cause substantive changes to the seismic hazard forecast compared to the previous 2018 NSHM. Additional updates to catalog processing and induced seismicity zones also contribute to changes in the gridded seismicity hazard since 2018. However, these changes are well understood and reflect improvements in our modeling of gridded seismicity hazard.

Publisher

Seismological Society of America (SSA)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3