Aftershock Sequence and Statistics of the 2017 Mw 5.5 Pohang, South Korea, Earthquake: Implications of Fault Heterogeneity and Postseismic Relaxation

Author:

Woo Jeong-Ung1,Kim Minook23,Rhie Junkee1,Kang Tae-Seob3

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea

2. Department of Structural Systems and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon, South Korea

3. Division of Earth Environmental System Science, Pukyong National University, Busan, Republic of Korea

Abstract

ABSTRACT The sequence of foreshocks, mainshock, and aftershocks associated with a fault rupture is the result of interactions of complex fault systems, the tectonic stress field, and fluid movement. Analysis of shock sequences can aid our understanding of the spatial distribution and magnitude of these factors, as well as provide seismic hazard assessment. The 2017 Mw 5.5 Pohang earthquake sequence occurred following fluid-induced seismic activity at a nearby enhanced geothermal system site and is an example of reactivation of a critically stressed fault system in the Pohang basin, South Korea. We created an earthquake catalog based on unsupervised data mining and measuring the energy ratio between short- and long-window seismograms recorded by a temporary seismic network. The spatial distribution of approximately 4000 relocated aftershocks revealed four fault segments striking southwestward. We also determined that the three largest earthquakes (ML>4) were located at the boundary of two fault segments. We infer that locally concentrated stress at the junctions of the faults caused such large earthquakes and that their ruptures on multiple segments can explain the high proportion of non-double-couple components. The area affected by aftershocks continues to expand to the southwest and northeast by 0.5 and 1  km decade−1, respectively, which may result from postseismic deformation or sequentially transferred static coulomb stress. The b-values of the Gutenberg–Richter relationship temporarily increased for the first three days of the aftershock sequence, suggesting that the stress field was perturbed. The b-values were generally low (<1) and locally variable throughout the aftershock area, which may be due to the complex fault structures and material properties. Furthermore, the mapped p-values of the Omori law vary along strike, which may indicate anisotropic expansion speeds in the aftershock region.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3