Evidence of Previous Faulting along the 2019 Ridgecrest, California, Earthquake Ruptures

Author:

Thompson Jobe Jessica Ann1,Philibosian Belle2,Chupik Colin1,Dawson Timothy3,K. Bennett Scott E.4,Gold Ryan5,DuRoss Christopher5,Ladinsky Tyler3,Kendrick Katherine6,Haddon Elizabeth4,Pierce Ian7,Swanson Brian8,Seitz Gordon3

Affiliation:

1. Bureau of Reclamation, Denver Federal Center, Denver, Colorado, U.S.A.

2. U.S. Geological Survey, Earthquake Science Center, Moffett Field, California, U.S.A.

3. California Geological Survey, San Mateo, California, U.S.A.

4. U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Moffett Field, California, U.S.A.

5. U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, U.S.A.

6. U.S. Geological Survey, Earthquake Science Center, Pasadena, California, U.S.A.

7. Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

8. California Geological Survey, Los Angeles, California, U.S.A.

Abstract

ABSTRACT The July 2019 Ridgecrest earthquakes in southeastern California were characterized as surprising by some, because only ∼35% of the rupture occurred on previously mapped faults. Employing more detailed inspection of pre-event high-resolution topography and imagery in combination with field observations, we document evidence of active faulting in the landscape along the entire fault system. Scarps, deflected drainages, and lineaments and contrasts in topography, vegetation, and ground color demonstrate previous slip on a dense network of orthogonal faults, consistent with patterns of ground surface rupture observed in 2019. Not all of these newly mapped fault strands ruptured in 2019. Outcrop-scale field observations additionally reveal tufa lineaments and sheared Quaternary deposits. Neotectonic features are commonly short (<2  km), discontinuous, and display en echelon patterns along both the M 6.4 and M 7.1 ruptures. These features are generally more prominent and better preserved outside the late Pleistocene lake basins. Fault expression may also be related to deformation style: scarps and topographic lineaments are more prevalent in areas where substantial vertical motion occurred in 2019. Where strike-slip displacement dominated in 2019, the faults are mainly expressed by less prominent tonal and vegetation features. Both the northeast- and northwest-trending active-fault systems are subparallel to regional bedrock fabrics that were established as early as ∼150  Ma, and may be reactivating these older structures. Overall, we estimate that 50%–70% (i.e., an additional 15%–35%) of the 2019 surface ruptures could have been recognized as active faults with detailed inspection of pre-earthquake data. Similar detailed mapping of potential neotectonic features could help improve seismic hazard analyses in other regions of eastern California and elsewhere that likely have distributed faulting or incompletely mapped faults. In areas where faults cannot be resolved as single throughgoing structures, we recommend a zone of potential faulting should be used as a hazard model input.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3