Absolute Location of 2019 Ridgecrest Seismicity Reveals a Shallow Mw 7.1 Hypocenter, Migrating and Pulsing Mw 7.1 Foreshocks, and Duplex Mw 6.4 Ruptures

Author:

Lomax Anthony1

Affiliation:

1. ALomax Scientific, Mouans-Sartoux, France

Abstract

ABSTRACT The 2019 Ridgecrest, California, sequence includes an Mw 6.4 earthquake on 4 July and an Mw 7.1 mainshock 34 hr later. We perform absolute location of Mw≥1.0 Ridgecrest events using multiple velocity models, station corrections, and a location algorithm robust to velocity model and arrival-time error. The obtained seismicity is mainly ∼3–12  km deep, with few shallower events. The Mw 6.4 hypocenter is ∼12  km deep, compatible with hypocentral depths of most Mw≥6 earthquakes in southern California. The Mw 7.1 hypocenter, however, is unusually shallow at ∼4  km. The immediate post-Mw 6.4 seismicity defines a deep, ∼12  km long, southeast–northwest structure containing the Mw 6.4 hypocenter and a shallower, orthogonal, ∼18  km  long northeast–southwest structure. These structures have little or no intersection, making the Mw 6.4 event a double earthquake, rupturing first the deeper and then the shallower structure. The ensuing, pre-Mw 7.1 seismicity extends the southeast–northwest structure northwestwards to within ∼3  km of the future Mw 7.1 hypocenter and illuminates a new crossing structure, whereas small clusters of events within 2 km of the future Mw 7.1 hypocenter activate 3–4 times in pulses from a few hours after the Mw 6.4 event through Mw 7.1 initiation. This pre-Mw 7.1 seismicity suggests Mw 7.1 rupture initiation activated as an event in the pulsing clusters, and early Mw 7.1 rupture growth was primed by stress changes from the Mw 6.4 rupture and its aftershocks. Moreover, shallow Mw 7.1 nucleation, for which spontaneous rupture growth into a large earthquake is not expected, may have required this incitation by the Mw 6.4 events, a significant complication for hazard estimation. Otherwise, Mw 7.1-like rupture might not have occurred until much later, perhaps with nucleation at greater depth. The Ridgecrest seismicity defines additional structures around and crossing the main Mw 6.4 and 7.1 rupture zones, but some of this seismicity likely shows delayed activity on pre-existing faults due to stress changes from the main events and not rupture complexity during the larger events.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3