Affiliation:
1. 1U.S. Geological Survey, Moffett Field, California, U.S.A.
Abstract
Abstract
The 2023 update to the National Seismic Hazard (NSHM) model is informed by several deformation models that furnish geodetically estimated fault slip rates. Here I describe a fault-based model that permits estimation of long-term slip rates on discrete faults and the distribution of off-fault moment release. It is based on quantification of the earthquake cycle on a viscoelastic model of the seismogenic upper crust and ductile lower crust and mantle. I apply it to a large dataset of horizontal and vertical Global Positioning System (GPS) interseismic velocities in the western United States, resulting in long-term slip rates on more than 1000 active faults defined for the NSHM. A reasonable fit to the GPS dataset is achieved with a set of slip rates designed to lie strictly within a priori geologic slip rate bounds. Time-dependent effects implemented via a “ghost transient” have a profound effect on slip rate estimation and tend to raise calculated slip rates along the northern and southern San Andreas fault by up to several mm/yr.
Publisher
Seismological Society of America (SSA)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献