Rupture Passing Probabilities at Fault Bends and Steps, with Application to Rupture Length Probabilities for Earthquake Early Warning

Author:

Biasi Glenn P.1ORCID,Wesnousky Steven G.2

Affiliation:

1. U.S. Geological Survey, Pasadena, California, U.S.A.

2. Center for Neotectonic Studies and Seismological Laboratory, University of Nevada, Reno, Nevada, U.S.A.

Abstract

ABSTRACT Earthquake early warning (EEW) systems can quickly identify the beginning of a significant earthquake rupture, but the first seconds of seismic data have not been found to predict the final rupture length. We present two approaches for estimating probabilities of rupture length given the rupture initiation from an EEW system. In the first approach, bends and steps on the fault are interpreted as physical mechanisms for rupture arrest. Arrest probability relations are developed from empirical observations and depend on bend angle and step size. Probability of arrest compounds serially with increasing rupture length as bends or steps are encountered. In the second approach, time-independent rates among ruptures from the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), are interpreted to apply to the time-dependent condition in which rupture grows from a known starting point. Length probabilities from a Gutenberg–Richter magnitude–frequency relation provide a reference of comparison. We illustrate the new approach using the discretized fault model for California developed for UCERF3. For the case of rupture initiating on the southeast end of the San Andreas fault we find the geometric complexity of the Mill Creek section impedes most ruptures, and only ∼5% are predicted to reach to San Bernardino on the eastern edge of the greater Los Angeles region. Conditional probabilities of length can be precompiled in this manner for any initiation point on the fault system and thus are of potential value in seismic hazard and EEW applications.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3