The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake

Author:

Ding XiaotianORCID,Xu ShiqingORCID,Xie YuqingORCID,Van den Ende MartijnORCID,Premus JanORCID,Ampuero Jean-PaulORCID

Abstract

Multiple lines of evidence indicate that the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake started on a splay fault, then branched bilaterally onto the nearby East Anatolian Fault (EAF). This rupture pattern includes one feature previously deemed implausible, called backward rupture branching: rupture propagating from the splay fault onto the SW EAF segment through a sharp corner (with an acute angle between the two faults). To understand this feature, we perform 2.5-D dynamic rupture simulations considering a large set of possible scenarios. We find that both subshear and supershear ruptures on the splay fault can trigger bilateral ruptures on the EAF, which themselves can be either subshear, supershear, or a mixture of the two. In most cases, rupture on the SW segment of the EAF starts after rupture onset on its NE segment: the SW rupture is triggered by the NE rupture. Only when the EAF has initial stresses very close to failure can its SW segment be directly triggered by the initial splay-fault rupture, earlier than the activation of the NE segment. These results advance our understanding of the mechanisms of multi-segment rupture and the complexity of rupture processes, paving the way for a more accurate assessment of earthquake hazards.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

HORIZON EUROPE European Research Council

Agence Nationale de la Recherche

Horizon 2020

Publisher

McGill University Library and Archives

Reference143 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3