Stress Drops and Directivity of Induced Earthquakes in the Western Canada Sedimentary Basin

Author:

Holmgren Joanna M.1,Atkinson Gail M.1,Ghofrani Hadi1

Affiliation:

1. Department of Earth Sciences, University of Western Ontario, 1151 Richmond Street N, London, Ontario, Canada N6A 5B7, joannamholmgren@gmail.com, gmatkinson@aol.com, hghofrani@gmail.com

Abstract

Abstract The Western Canada sedimentary basin (WCSB) has experienced an increase in seismicity during the last decade due primarily to hydraulic fracturing. Understanding the ground motions of these induced earthquakes is critical to characterize the increase in hazard. Stress drop is considered an important parameter in this context because it is a measure of the high‐frequency content of the shaking. We use the empirical Green’s function (EGF) method to determine S‐wave corner frequencies and stress drops of 87 earthquakes of moment magnitude (M) 2.3–4.4 in the WCSB. The EGF method is an effective technique to isolate earthquake source effects by dividing out the path and site components in the frequency domain, using a smaller collocated earthquake as an EGF. The corner frequency of the target event is determined for an assumed spectral ratio shape, from which the stress drop is computed. Assuming a fixed velocity, we find that the average stress drop for induced earthquakes in the WCSB for small‐to‐moderate events is 7.5±0.5  MPa, with a total range from 0.2 to 370 MPa. However, because of the dependence of stress drop on model conventions and constants, we consider the absolute stress‐drop value meaningful only for comparison with other results using the same underlying models. By contrast, corner frequency is a less‐ambiguous variable with which to characterize the source spectrum. The range of corner frequencies obtained in this study for events of M 4.0±0.5 is 1.1–5.8 Hz. Significant rupture directivity is observed for more than one‐third of the earthquakes, with station corner frequencies varying by about a factor of 4 with azimuth. This emphasizes the importance of having suitable station coverage to determine source parameters. We model directivity where evident using a Haskell source model and find that the rupture azimuths are primarily oriented approximately north–south throughout the region.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3