Direct Evidence for Diverse Source Complexity in Small Earthquakes (Mw 3.3–5.0) Obtained from Near-Source Borehole Seismic Data

Author:

Yoshida Keisuke1ORCID

Affiliation:

1. 1Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, Sendai, Japan

Abstract

Abstract Small earthquakes (Mw <5) may have a similar degree of complexity as large earthquakes. However, their seismic waveforms are strongly distorted during wave propagation, making their complexity challenging to resolve. In many cases, the source parameters of small events are determined based on models that assume their source patterns are simple. In this study, to directly examine the source complexities in small events, we examined high-quality near-source (<8 km) seismic waveforms recorded by two excellent downhole sensors in Japan. The results show that the P waveforms of microearthquakes (Mw <2) are always simple at the sensors and agree well with the synthetic waveforms based on a 1D structure up to 20 Hz. The microearthquake waveforms in this frequency band essentially represent path effects besides the static source effect, suggesting that the contribution of structural inhomogeneity to the observed waveforms is small. Taking advantage of this, we inferred the moment rate functions of 164 Mw 3.3–5.0 events from the shapes of the direct P waves. They showed diversity in their complexity, and even conservatively estimated, 25% of the events had multiple subevents. The results suggest that methods that account for complexity, rather than those that assume a simple source pattern, are required to characterize even small events.

Publisher

Seismological Society of America (SSA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3