Relaxing Segmentation on the Wasatch Fault Zone: Impact on Seismic Hazard

Author:

Valentini Alessandro1,DuRoss Christopher B.2,Field Edward H.2,Gold Ryan D.2,Briggs Richard W.2,Visini Francesco3,Pace Bruno1

Affiliation:

1. DiSPuTer Department, Università degli Studi “G. d’Annunzio” di Chieti-Pescara, Chieti, Italy

2. U.S. Geological Survey, Golden, Colorado, U.S.A.

3. Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy

Abstract

ABSTRACT The multisegment Wasatch fault zone is a well-studied normal fault in the western United States that has paleoseismic evidence of recurrent Holocene surface-faulting earthquakes. Along the 270 km long central part of the fault, four primary structural complexities provide possible along-strike limits to these ruptures and form the basis for models of fault segmentation. Here, we assess the impact that the Wasatch fault segmentation model has on seismic hazard by evaluating the time-independent long-term rate of ruptures on the fault that satisfy fault-slip rates and paleoseismic event rates, adapting standard inverse theory used in the Uniform California Earthquake Rupture Forecast, Version 3, and implementing a segmentation constraint in which ruptures across primary structural complexities are penalized. We define three models with varying degrees of rupture penalization: (1) segmented (ruptures confined to individual segments), (2) penalized (multisegment ruptures allowed, but penalized), and (3) unsegmented (all ruptures allowed). Seismic-hazard results show that, on average, hazard is highest for the segmented model, in which seismic moment is accommodated by frequent moderate (moment magnitude Mw 6.2–6.8) earthquakes. The unsegmented model yields the lowest average seismic hazard because part of the seismic moment is accommodated by large (Mw 6.9–7.9) but infrequent ruptures. We compare these results to model differences derived from other inputs such as slip rate and magnitude scaling relations and conclude that segmentation exerts a primary control on seismic hazard. This study demonstrates the need for additional geologic constraints on rupture extent and methods by which these observations can be included in hazard-modeling efforts.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3