Robust Empirical Time–Frequency Relations for Seismic Spectral Amplitudes, Part 1: Application to Regional S Waves in Southeastern Iran

Author:

Safarshahi Maryam1,Morozov Igor B.1

Affiliation:

1. Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada

Abstract

ABSTRACT Empirical models of geometrical-, Q-, t-star, and kappa-type attenuation of seismic waves and ground-motion prediction equations (GMPEs) are viewed as cases of a common empirical standard model describing variation of wave amplitudes with time and frequency. Compared with existing parametric and nonparametric approaches, several new features are included in this model: (1) flexible empirical parameterization with possible nonmonotonous time or distance dependencies; (2) joint inversion for time or distance and frequency dependencies, source spectra, site responses, kappas, and Q; (3) additional constraints removing spurious correlations of model parameters and data residuals with source–receiver distances and frequencies; (4) possible kappa terms for sources as well as for receivers; (5) orientation-independent horizontal- and three-component amplitudes; and (6) adaptive filtering to reduce noise effects. The approach is applied to local and regional S-wave amplitudes in southeastern Iran. Comparisons with previous studies show that conventional attenuation models often contain method-specific biases caused by limited parameterizations of frequency-independent amplitude decays and assumptions about the models, such as smoothness of amplitude variations. Without such assumptions, the frequency-independent spreading of S waves is much faster than inferred by conventional modeling. For example, transverse-component amplitudes decrease with travel time t as about t−1.8 at distances closer than 90 km and as t−2.5 beyond 115 km. The rapid amplitude decay at larger distances could be caused by scattering within the near surface. From about 90 to 115 km distances, the amplitude increases by a factor of about 3, which could be due to reflections from the Moho and within the crust. With more accurate geometrical-spreading and kappa models, the Q factor for the study area is frequency independent and exceeds 2000. The frequency-independent and Q-type attenuation for vertical-component and multicomponent amplitudes is somewhat weaker than for the horizontal components. These observations appear to be general and likely apply to other areas.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3