Robust Empirical Time–Frequency Relations for Seismic Spectral Amplitudes, Part 2: Model Uncertainty and Optimal Parameterization

Author:

Safarshahi Maryam1,Morozov Igor B.1

Affiliation:

1. Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Abstract

ABSTRACT In a companion article, Safarshahi and Morozov (2020) argued that construction of distance- and frequency-dependent models for seismic-wave amplitudes should include four general elements: (1) a sufficiently detailed (parametric or nonparametric) model of frequency-independent spreading, capturing all essential features of observations; (2) model parameters with well-defined and nonoverlapping physical meanings; (3) joint inversion for multiple parameters, including the geometrical spreading, Q, κ, and source and receiver couplings; and (4) the use of additional dataset-specific criteria of model quality, while fitting the logarithms of seismic amplitudes. Some of these elements are present in existing models, but, taken together, they are poorly understood and require an integrated approach. Such an approach was illustrated by detailed analysis of an S-wave amplitude dataset from southern Iran. The resulting model is based on a frequency-independent Q, and matches the data closer than conventional models and across the entire epicentral-distance range. Here, we complete the analysis of this model by evaluating the uncertainties and trade-offs of its parameters. Two types of trade-offs are differentiated: one caused by a (possibly) limited model parameterization and the second due to statistical data errors. Data bootstrapping shows that with adequate parameterization, attenuation properties Q, κ, and geometrical spreading parameters are resolved well and show moderate trade-offs due to measurement errors. Using the principal component analysis of these trade-offs, an optimal (trade-off free) parameterization of seismic amplitudes is obtained. By contrast, when assuming theoretical values for certain model parameters and using multistep inversion procedures (as commonly done), parameter trade-offs increase dramatically and become difficult to assess. In particular, the frequency-dependent Q correlates with the distribution of the source and receiver-site factors, and also with biases in the resulting median data residuals. In the new model, these trade-offs are removed using an improved parameterization of geometrical spreading, constant Q, and model quality constraints.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3