Thermoelastic strain in a half-space covered by unconsolidated material

Author:

Ben-Zion Yehuda1,Leary Peter1

Affiliation:

1. University of Southern California Department of Geological Sciences Los Angeles, California 90089-0741

Abstract

Abstract An algorithm to predict crustal thermoelastic strain from observed local atmospheric temperature is given and applied to a 24-month crustal strain record of one test strainmeter site located near Bouquet Reservoir in southern California. We use a crustal model that consists of an elastically decoupled layer overlying a uniform elastic half-space, and a thermal source that is given by a stationary temperature wave whose wavelength is related to local topography and/or lateral material heterogeneity. The decoupled layer delays, attenuates, and low-pass filters the source temperature field. The thermoelastic strain in the underlying half-space, resulting from the temperature variations at the base of the decoupled layer, is calculated using the Berger (1975) solution for thermoelastic strain in a uniform half-space. Applying our model to the test data, we obtain a good fit between predicted and observed strains if we filter the surface thermal signal through a 63-cm-thick decoupled layer. Much of the remaining strain variations clearly correspond to other environmental sources (reservoir loading and rainfall). Our analysis suggests that the horizontal thermoelastic strain is inversely proportional to the wavelength of local topography and/or lateral material heterogeneity. Thus, the horizontal thermoelastic strain will be greater in areas of local topography and/or lateral material heterogeneity and smaller in more homogeneous and flat areas. An upper layer of loose material, natural or artificial, acts as a thermoelastic strain insulator. Burial of strainmeters in places where such a layer exists can reduce the thermoelastic strain noise considerably even for shallow strainmeter emplacements.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3