A Data-Driven Framework for Automated Detection of Aircraft-Generated Signals in Seismic Array Data Using Machine Learning

Author:

Zhang Xinxiang1ORCID,Arrowsmith Stephen1ORCID,Tsongas Sotirios1,Hayward Chris1,Meng Haoran2ORCID,Ben-Zion Yehuda3

Affiliation:

1. Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas, U.S.A.

2. Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, California, U.S.A.

3. Department of Earth Sciences and Southern California Earthquake Center, University of Southern California, Los Angeles, California, U.S.A.

Abstract

Abstract Ground motions associated with aircraft overflights can cover a significant portion of the seismic data collected by shallowly emplaced seismometers, such as new nodal and Distributed Acoustic Sensing systems. This article describes the first published framework for automated detection of aircraft on single channel and multichannel seismic data. The seismic data are converted to spectrograms in a sliding time window and classified as aircraft or nonaircraft in each window using a deep convolutional neural network trained with analyst-labeled data. A majority voting scheme is used to convert the output from the sequence of sliding time windows onto a decision time sequence for each channel and to combine the binary classifications on the decision time sequences across multiple channels. Precision, recall, and F-score are used to quantify the detection performance of the algorithm on nodal data using fourfold time-series cross validation. By applying our framework to data from the Sage Brush Flats nodal array in Southern California, we provide a benchmark performance and demonstrate the advantage of using an array of sensors.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3