Sensing Human Activity of the Guangdong–Hong Kong–Macao Greater Bay Area by Ambient Seismic Noise

Author:

Chen Lihui12,Xia Shaohong1ORCID

Affiliation:

1. CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Effective monitoring of human activity in urban areas is essential for social stability and urban development. Traditional monitoring methods include wearable devices, survey sensor networks, and satellite remote sensing, which may be affected by privacy and weather conditions. Ambient seismic noise recorded by seismometers contains rich information about human activity and exhibits significant temporal and spatial variations, which provides valuable insights into social mobility. In this study, we investigated the correlation between human activity and ambient seismic noise in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) using the data recorded by 138 seismometers. Our results indicate that ambient seismic noise produced by human activity in the GBA is mainly concentrated between 2 and 20 Hz. The spatial distribution of ambient seismic noise exhibits a strong correlation with population and economy. Our results show that the analysis of ambient seismic noise can reveal the spatial and temporal impacts of different factors on human activity in the GBA, such as day and night, holidays, weather changes, national policies, and the coronavirus disease 2019 (COVID-19) pandemic. Furthermore, the analysis of 12-year-long ambient seismic noise at the Hong Kong seismic station shows a close connection between long-term changes in ambient seismic noise and local social development. This study suggests that the analysis of ambient seismic noise represents a novel method to gather critical information about human activity. Seismometers, which are widely deployed worldwide, have great potential as innovative tools for sensing human activity.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3