On the Importance of Using Directional Information in the Search for Lower Mantle Reflectors

Author:

Rochira Federica1ORCID,Thomas Christine1ORCID

Affiliation:

1. 1Institut für Geophysik, Westfälische Wilhelms-Universität Münster, Münster, Germany

Abstract

Abstract The SS precursor signals are a powerful tool for mapping topography of mantle discontinuities, which are sensitive to the thermal and compositional structure of the mantle. The depth of mantle discontinuities is usually estimated using the differential travel time between the main arrival and its precursor. However, this method ignores potential travel path deviations that influence the travel time of precursor signals. Here, we use an approach that considers directivity information as well as travel-time measurements. Applying seismic array techniques, we measure slowness, back azimuth, and travel time of the signals, and use this information to backproject to the point of reflection. In our test dataset, we observe deviations from the predicted values in slowness and back azimuth in the range of 0.1–2.3 s/° and 1–20°, respectively. These values lead to reflection locations that can differ considerably from theoretical reflection points calculated with great circle plane paths as well as depths different from the depth calculated for in-plane propagation, with differences up to ∼150 km. Our results indicate that the travel-path deviations should be considered to avoid misinterpretation of mantle discontinuities and potentially reduce previously observed scatter in discontinuity depth.

Publisher

Seismological Society of America (SSA)

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3