Deep Neural Networks for Earthquake Detection and Source Region Estimation in North-Central Venezuela

Author:

Tous Ruben1,Alvarado Leonardo23,Otero Beatriz1,Cruz Leonel1,Rojas Otilio24

Affiliation:

1. Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

2. Universidad Central de Venezuela, Caracas, Venezuela

3. Venezuelan Foundation for Seismological Research, FUNVISIS, Caracas, Venezuela

4. Barcelona Supercomputing Center (BSC), Barcelona, Spain

Abstract

ABSTRACT Reliable earthquake detection algorithms are necessary to properly analyze and catalog the continuously growing seismic records. We report the results of applying a deep convolutional neural network, called UPC-UCV (Universitat Politecnica de Catalunya - Universidad Central de Venezuela), over single-station three-channel signal windows for P-wave earthquake detection and source region estimation in north-central Venezuela. The analysis is performed on a new dataset of handpicked arrivals of P waves from local events, named CARABOBO, built and made public for reproducibility and benchmarking purposes. The CARABOBO dataset consists of three-channel continuous data recorded by the broadband stations of the Venezuelan Foundation for Seismological Research in the region of 9.5°–11.5°N and 67.0°–69.0°W during the time period from April 2018 to April 2019. During this period, 949 earthquakes were recorded in that area, corresponding to earthquakes with magnitudes in the range from Mw 1.1 to 5.2. To estimate the epicentral source region of a detected event, the proposed network employs geographical distribution of the CARABOBO dataset into K clusters as a basis. This geographical partitioning is automatically performed by the k-means algorithm, and the optimality of the K-values for our dataset has been assessed using the elbow (K=5) and silhouette (K=3) methods. For target seismicity, the proposed network achieves 95.27% detection accuracy and 93.36% source region estimation accuracy, when using K=5 geographic clusters. The location accuracy slightly increases to 95.68% in the case of K=3 geographic partitions. The detection capability of this network has also been tested on the OKLAHOMA dataset, which compiles more than 2000 local earthquakes that occurred in this U.S. state. Without any modification, the proposed network yields excellent detection results when trained and evaluated on that dataset (98.21% accuracy; ConvNetQuake, fine-tuned for this dataset, achieves a 97.32% accuracy), corresponding to a totally different geographical region.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3