Traveltime-based microseismic event location using artificial neural network

Author:

Anikiev Denis,Waheed Umair bin,Staněk František,Alexandrov Dmitry,Hao Qi,Iqbal Naveed,Eisner Leo

Abstract

Location of earthquakes is a primary task in seismology and microseismic monitoring, essential for almost any further analysis. Earthquake hypocenters can be determined by the inversion of arrival times of seismic waves observed at seismic stations, which is a non-linear inverse problem. Growing amounts of seismic data and real-time processing requirements imply the use of robust machine learning applications for characterization of seismicity. Convolutional neural networks have been proposed for hypocenter determination assuming training on previously processed seismic event catalogs. We propose an alternative machine learning approach, which does not require any pre-existing observations, except a velocity model. This is particularly important for microseismic monitoring when labeled seismic events are not available due to lack of seismicity before monitoring commenced (e.g., induced seismicity). The proposed algorithm is based on a feed-forward neural network trained on synthetic arrival times. Once trained, the neural network can be deployed for fast location of seismic events using observed P-wave (or S-wave) arrival times. We benchmark the neural network method against the conventional location technique and show that the new approach provides the same or better location accuracy. We study the sensitivity of the proposed method to the training dataset, noise in the arrival times of the detected events, and the size of the monitoring network. Finally, we apply the method to real microseismic monitoring data and show that it is able to deal with missing arrival times in efficient way with the help of fine tuning and early stopping. This is achieved by re-training the neural network for each individual set of picked arrivals. To reduce the training time we used previously determined weights and fine tune them. This allows us to obtain hypocenter locations in near real-time.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference47 articles.

1. TensorFlow: Large-scale machine learning on heterogeneous systems AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. 2015

2. Microseismic location error due to eikonal traveltime calculation;Alexandrov;Appl. Sci.,2021

3. Microseismic event location using artificial neural networks;Anikiev,2021

4. Location and source mechanism determination of microseismic events;Anikiev,2015

5. Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing;Anikiev;Geophys. J. Int.,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3