Velocity‐Based Earthquake Detection Using Downhole Distributed Acoustic Sensing—Examples from the San Andreas Fault Observatory at Depth

Author:

Lellouch Ariel1,Yuan Siyuan1,Ellsworth William L.1,Biondi Biondo1

Affiliation:

1. Department of Geophysics, Stanford University, 397 Panama Mall, Stanford, California 94035 U.S.A., ariellel@stanford.edu, syyuan@stanford.edu, wellsworth@stanford.edu, biondo@stanford.edu

Abstract

Abstract Conventional seismographic networks sparsely sample the wavefields excited by earthquakes. Thus, standard event detection is conducted by analyzing separate stations and merging their results. Emerging distributed acoustic sensing recording technologies allow for unbiased spatial sampling of the wavefield and, as a result, array‐based processing of the recorded signals. Using a cemented fiber in the San Andreas Fault Observatory at Depth main hole, 800 virtual receivers are sampled at a 1 m interval from the surface to 800 m depth. Recorded earthquakes are approximated as plane waves reaching the bottom of the array first. Following this assumption, the relative travel times of the recorded event depend on the local velocity at the array location and the angle of incidence at which the planar wavefront reaches it. Given the seismic velocity, a newly proposed detection algorithm amounts to a single‐parameter scan of the incidence angle and measurement of data coherency along the different possible travel‐time curves. Using the entire recording array, a much higher effective signal‐to‐noise ratio can be obtained when compared to individual channel processing. About 20 days of recorded seismic activity from the San Andreas Fault is analyzed. Using a downhole single array, the majority of cataloged events in the area are detected. In addition, a previously unknown event is unveiled. We estimate its magnitude at roughly −0.5.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3