Deep Learning Model for Spatial Interpolation of Real-Time Seismic Intensity

Author:

Otake Ryota1,Kurima Jun1,Goto Hiroyuki1,Sawada Sumio1

Affiliation:

1. Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Japan

Abstract

Abstract Spatial distribution of seismic intensity plays an important role in emergency response during and immediately after an earthquake. In this study, we propose a deep learning model to predict the seismic intensity based on only the observation records at the seismic stations in a surrounding area. The deep learning model is trained using the observation records at both the input and target stations, and no geological information is used. Once the model is developed, for example, using the data from a temporal seismic array, the model can spatially interpolate the seismic intensity from the sparse layout of the seismic stations. The model consists of long short-term memory cells, which are well-established neural network components for time series analysis. We used observed seismograms in 1996 through 2019 at the Kyoshin Network (K-NET) and Kiban–Kyoshin Network (KiK-net) stations located in the northeastern part of Japan. In our deep learning model, approximately 85% of validation data is successfully classified into seismic intensity scales, which is better than adopting either the maximum or weighted average of the input data. We also apply the deep learning model to earthquake early warning (EEW). The model can predict the seismic intensity accurately and provides a long warning time. We concluded that our approach is a possible future solution for increasing the accuracy of EEW.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3