Seismic Characterization of Subsurface Structures at Rock Valley, Nevada

Author:

Li David1ORCID,Gao Kai1ORCID,Chen Ting1ORCID,Huang Lianjie1ORCID,Swanson Erika1,Snelson Catherine1,Bodmer Miles2ORCID,Zeiler Cleat2ORCID,Turley Reagan3ORCID

Affiliation:

1. 1Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A.

2. 2Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

3. 3Nevada National Security Site, North Las Vegas, Nevada, U.S.A.

Abstract

ABSTRACT The Source Physics Experiment (SPE) aims at improving explosion monitoring techniques by investigating source characteristics of chemical explosions in geologic formations. One of the critical tasks in Rock Valley Direct Comparison (RV/DC), SPE phase III, is to prepare for the main experiment by characterizing the subsurface structures at the test site. Based on the seismic data acquired during an accelerated-weight-drop (AWD) seismic survey at Rock Valley, we first pick the P-wave first-arrival travel times and derive a P-wave velocity model using the adjoint-state first-arrival travel-time tomography. We then apply reverse-time migration to the processed seismic data and obtain high-resolution images of the subsurface structures along the two main survey lines. Our migration results show several reflectors corresponding to major geologic formation boundaries. We employ a multitask machine learning model to enhance the reverse-time migration images and identify faults from these images. We find that our automatically picked faults correlate well with the locations of known faults in the region in addition to many geologically undetected faults. Our subsurface characterization results refine our understanding of the geology in this region and provide valuable velocity and structural information for RV/DC geologic model building and fault identification.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3