Properties of strong ground motion earthquakes*

Author:

Housner George W.1

Affiliation:

1. California Institute of Technology Pasadena, California

Abstract

Summary The analysis given here considers that an earthquake fault is formed by the superposition of a large number of incremental shear dislocations the sudden release of which produces the earthquake. It is postulated that during an earthquake the incremental dislocations are released in such a way that the average slip is proportional to the square root of the area of slip, and that the probability of release of individual incremental dislocations is such that the probability of a total slip area A is inversely proportional to A. With these two postulates a frequency distribution of earthquakes is derived that agrees with observed data; the Richter magnitude is shown to be essentially a logarithmic measure of the average slip on a fault; and an expression is derived for the energy released by an earthquake that agrees with that derived from consideration of the energy carried in a wave train. Expressions are derived also for the areas of slip during earthquakes, the maximum relative slip, and the average annual, over-all shearing distortion of the state of California and these are in satisfactory agreement with observed behavior. It is assumed that an accelerogram is formed by the superposition of a large number of elemental acceleration pulses random in time. It is shown that this agrees with recorded accelerograms, and an accelerogram composed in this fashion is shown to have the characteristics of actual recorded accelerograms. It is also shown that the maximum ground accelerations in the vicinity of the center of the fault, so far as they are dependent upon the size of the slip area, have essentially reached their upper limits for shocks with areas of slip approximately equal to that associated with the El Centro earthquake of 1940.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3