Affiliation:
1. Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
Abstract
Abstract
Stretching nearly the extent of the Canadian Cordillera, the Rocky Mountain trench (RMT) forms one of the longest valleys on Earth. Yet, the level of seismicity, and style of faulting, on the RMT remains poorly known. We assess earthquakes in the southern RMT using a temporary network of seismometers around Valemount, British Columbia, and identify active structures using a probabilistic earthquake catalog spanning from September 2017 to August 2018. Together with results from earlier geological and seismic studies, our new earthquake catalog provides a constraint on the geometry of subsurface faults and their level of activity during a year of recording. The tectonic analysis presented here benefits from the catalog of 47 earthquakes, including robust horizontal and vertical uncertainty quantification. The westward dip of the southern RMT fault is one of the prominent subsurface structures that we observe. The seismicity observed here occurs on smaller surrounding faults away from the RMT and shifts from the east to the west of the trench from north to south of Valemount. The change in distribution of earthquakes follows changes in the style of deformation along the length of the RMT. Focal mechanisms calculated for two earthquakes with particularly clear waveforms reveal northeast–southwest-oriented thrusting. The seismicity reveals a change in the pattern of deformation from narrowly focused transpression north of Valemount to more broadly distributed activity in an area characterized by normal faulting to the south. Six sets of repeating events detected here produce similar waveforms whose P waves exhibit correlation coefficients that exceed 0.7 and may result from the migration of fluids through the fractured crust.
Publisher
Seismological Society of America (SSA)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献