Structure and Dynamics of the Southern Rocky Mountain Trench near Valemount, British Columbia, Inferred from Local Seismicity

Author:

Purba Joshua C. S.1ORCID,Gilbert Hersh1ORCID,Dettmer Jan1ORCID

Affiliation:

1. Department of Geoscience, University of Calgary, Calgary, Alberta, Canada

Abstract

Abstract Stretching nearly the extent of the Canadian Cordillera, the Rocky Mountain trench (RMT) forms one of the longest valleys on Earth. Yet, the level of seismicity, and style of faulting, on the RMT remains poorly known. We assess earthquakes in the southern RMT using a temporary network of seismometers around Valemount, British Columbia, and identify active structures using a probabilistic earthquake catalog spanning from September 2017 to August 2018. Together with results from earlier geological and seismic studies, our new earthquake catalog provides a constraint on the geometry of subsurface faults and their level of activity during a year of recording. The tectonic analysis presented here benefits from the catalog of 47 earthquakes, including robust horizontal and vertical uncertainty quantification. The westward dip of the southern RMT fault is one of the prominent subsurface structures that we observe. The seismicity observed here occurs on smaller surrounding faults away from the RMT and shifts from the east to the west of the trench from north to south of Valemount. The change in distribution of earthquakes follows changes in the style of deformation along the length of the RMT. Focal mechanisms calculated for two earthquakes with particularly clear waveforms reveal northeast–southwest-oriented thrusting. The seismicity reveals a change in the pattern of deformation from narrowly focused transpression north of Valemount to more broadly distributed activity in an area characterized by normal faulting to the south. Six sets of repeating events detected here produce similar waveforms whose P waves exhibit correlation coefficients that exceed 0.7 and may result from the migration of fluids through the fractured crust.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3