Impact of the Uncertainty in the Parameters of the Earthquake Occurrence Model on Loss Estimates of Urban Building Portfolios

Author:

Damiani Alessandro1ORCID,Poggi Valerio2ORCID,Scaini Chiara2ORCID,Kohrangi Mohsen3ORCID,Bazzurro Paolo1ORCID

Affiliation:

1. 1University School for Advanced Studies - IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria, Pavia, Italy

2. 2National Institute of Oceanography and Applied Geophysics – OGS, Udine, Italy

3. 3RED - Risk Engineering + Development, Pavia, Italy

Abstract

Abstract Understanding the potential socioeconomic losses due to natural hazards, such as earthquakes, is of foremost importance in the field of catastrophe risk management. The construction of a probabilistic seismic risk model is complex and requires the tuning of several parameters essential to represent the seismic hazard of the region, the definition of the exposed inventory characteristics, and its vulnerability to ground motion. Because significant uncertainties could be associated with each model component, the loss estimates are often highly volatile. Nevertheless, to reduce the conceptual complexity and the computational burden, in many real-life applications these uncertainties are either not adequately treated or neglected altogether. The false high fidelity of the ensuing loss estimates can mislead decision-making strategies. Hence, it is useful to assess the influence that the variability in the estimated values of the model input parameters may exert on the final risk results and their relevant contributions. To this purpose, we have performed a sensitivity analysis of the results of an urban seismic risk assessment for Isfahan (Iran). Systematic variations have been applied to the values of the parameters that control the earthquake occurrence in the probabilistic seismic hazard model. Curves of input–output relative variations were built for different risk metrics with the goal of identifying the parameters most sensitive to input uncertainty. Our findings can be useful to support risk managers and practitioners in the process of building seismic hazard and risk models. We found that the Gutenberg–Richter a and b values, the maximum magnitude, and the threshold magnitude are large contributors to the variability of important risk measures, such as the 475 yr and the average annual loss, with the more frequent losses being, in general, most sensitive.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Reference53 articles.

1. BC hydro ground motion prediction equations for subduction earthquakes;Abrahamson;Earthq. Spectra,2016

2. Uncertainty propagation in probabilistic seismic loss estimation;Baker;Struct. Saf.,2008

3. Effects of different sources of uncertainty and correlation on earthquake-generated losses;Bazzurro;Aust. J. Civil Eng.,2007

4. The effects of portfolio manipulation on earthquake portfolio loss estimates;Bazzurro,2007

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3